[ | E-mail | Share ]
Contact: Lan Yoon
hlyoon@kaist.ac.kr
82-423-502-295
The Korea Advanced Institute of Science and Technology (KAIST)
Environmental problems, such as depleting natural resources, highlight the need to establish a renewable chemical industry. Metabolic engineering enhances the production of chemicals made by microbes in so-called "cell factories". Next Monday, world class scientist Professor Sang Yup Lee of KAIST (Korea Advanced Institute of Science and Technology) will explain how metabolic engineering could lead to the development of solutions to these environmental problems.
For example, the polyester polylactic acid (PLA) is a biodegradable material with a wide range of uses, from medical implants, to cups, bags, food packaging and disposable tableware. It and its co-polymer can be produced by direct fermentation of renewable resources using metabolically engineered Escherichia coli. 1 (image available - see note 3).
Microorganisms isolated from nature use their own metabolism to produce certain chemicals. But they are often inefficient, so metabolic engineering is used to improve microbial performance. Beginning in the 1990s, metabolic engineering involves the modification of microbial cells to enhance the production of what's known as a bioproduct. This bioproduct can be something that the cell produces naturally, like ethanol or butanol. It can also be something that the cells mechanisms can produce if their natural metabolic pathways are altered in some way. The range of uses of this bioproduct can be broadened through metabolic engineering, which can also optimize the overall process of bioproduct synthesis.
Recently, metabolic engineering has become more powerful, through the integration of itself with systems and synthetic biology. Systems biology is a relatively new approach to biological research which looks at the complex interactions within whole cell systems. It allows cell-wide understanding of metabolic reactions and the way these are regulated by the cell's genes.
Synthetic biology is another new approach that designs and constructs new biological functions and systems that aren't found in nature. It allows the design of new genes, modules and circuits that can be used to modulate the cells metabolism to make more of the desired bioproduct. So systems metabolic engineering can now develop superior microorganisms much more efficiently through the integration of itself with systems biology and synthetic biology.
Professor Lee will introduce general strategies for systems metabolic engineering which will be accompanied by many successful examples, including the production of chemicals, fuels and materials such as propanol, butanol, 1,4-diaminobutane, 1,5-diaminopentane, succinic acid, polyhydroxyalkanoates, and polylactic acid.
Professor Sang Yup Lee said: "Bio-based production of chemicals and materials will play an increasingly important role in establishing a sustainable world. To make the bioprocess efficient and economically competitive, it is essential to improve the performance of microorganisms through systems metabolic engineering. From industrial solvents to plastics, an increasing number of products of everyday use will be produced through bioprocesses."
Professor Lee will present the 5th Environmental Microbiology Lecture on 8 October 2012 at the Royal Society of Medicine, 1 Wimpole Street, London W1G 0AE. Registration begins at 17.30 and the lecture will start 18.30. There will be a drinks reception after the lecture at 19.30 - 20.30.
###
Notes to Editors:
Contact Details
Additional information is available from: Dr Lucy Harper, Communications Manager at the Society for Applied Microbiology [Office: +44(0)1234 326661; Mobile: 07920 264596; email: lucy@sfam.org.uk]
1. The Environmental Microbiology lecture co-sponsored by the Society for Applied Microbiology and Wiley-Blackwell will take place from 17.30 on 8 October 2012 at the Royal Society of Medicine, 1 Wimpole Street London W16 0AE. Professor Sang Yup Lee will be available for interviews from 17.00 before the event.
2. The lecture will be available online 24hrs after the event.
3. A photograph of a transmission electron micrograph of metabolically engineered Escherichia coli cells accumulating poly(lactate-co-3hydroxybutyrate) copolymers is available via this dropbox folder: https://www.dropbox.com/sh/k02x6hiulvpmvx5/TOo3E58jqh
4. Photographs will be taken during the event and will be available on request from Dr Lucy Harper: lucy@sfam.org.uk or Clare Doggett: clare@sfam.org.uk
5. About Wiley-Blackwell
Wiley-Blackwell is the international scientific, technical, medical and scholarly publishing business of John Wiley & Sons, with strengths in every major academic and professional field and partnerships with many of the world's leading societies. Wiley-Blackwell publishes over 1,400 peer-reviewed journals as well as 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols. For more information, please visit www.wileyonlinelibrary.com or www.wileyonlinelibrary.com.
6. About the Society for Applied Microbiology (SfAM)
SfAM is the voice of applied microbiology within the UK. It is the oldest UK microbiology society with members worldwide. In 2006 SfAM celebrated the 75th anniversary and a number of special events were held during the year. The final celebration was the President's Dinner which was held in the Palace of Westminster on 23rd November 2006. SfAM works in partnership with sister organisations and microbiological bodies to ensure that microbiology and microbiologists are able to exert influence on policy-makers within the UK, in Europe and world-wide.
7. About KAIST Korea Advanced Institute of Science and Technology
(KAIST) was established in 1971 as Korea's first research university specialized in science, engineering and technology. In 1986, the university began admitting undergraduate students (As of today, KAIST has 6,000 graduate and 4,000 undergraduate students). Mainly funded by the Korean government, KAIST has played an integral role in the nation's state-of-the-art research and technology development and nurtured highly trained scientists and engineers who became outstanding leaders in academia, industry and business throughout the world.
Ref:1. Yu Kyung Jung, Tae Yong Kim, Si Jae Park, Sang Yup Lee. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnology and Bioengineering Volume 105, Issue 1, pages 161-171, 1 January 2010 DOI:10.1002/bit.22548. http://onlinelibrary.wiley.com/doi/10.1002/bit.22548/abstract - full article behind paywall.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
[ | E-mail | Share ]
Contact: Lan Yoon
hlyoon@kaist.ac.kr
82-423-502-295
The Korea Advanced Institute of Science and Technology (KAIST)
Environmental problems, such as depleting natural resources, highlight the need to establish a renewable chemical industry. Metabolic engineering enhances the production of chemicals made by microbes in so-called "cell factories". Next Monday, world class scientist Professor Sang Yup Lee of KAIST (Korea Advanced Institute of Science and Technology) will explain how metabolic engineering could lead to the development of solutions to these environmental problems.
For example, the polyester polylactic acid (PLA) is a biodegradable material with a wide range of uses, from medical implants, to cups, bags, food packaging and disposable tableware. It and its co-polymer can be produced by direct fermentation of renewable resources using metabolically engineered Escherichia coli. 1 (image available - see note 3).
Microorganisms isolated from nature use their own metabolism to produce certain chemicals. But they are often inefficient, so metabolic engineering is used to improve microbial performance. Beginning in the 1990s, metabolic engineering involves the modification of microbial cells to enhance the production of what's known as a bioproduct. This bioproduct can be something that the cell produces naturally, like ethanol or butanol. It can also be something that the cells mechanisms can produce if their natural metabolic pathways are altered in some way. The range of uses of this bioproduct can be broadened through metabolic engineering, which can also optimize the overall process of bioproduct synthesis.
Recently, metabolic engineering has become more powerful, through the integration of itself with systems and synthetic biology. Systems biology is a relatively new approach to biological research which looks at the complex interactions within whole cell systems. It allows cell-wide understanding of metabolic reactions and the way these are regulated by the cell's genes.
Synthetic biology is another new approach that designs and constructs new biological functions and systems that aren't found in nature. It allows the design of new genes, modules and circuits that can be used to modulate the cells metabolism to make more of the desired bioproduct. So systems metabolic engineering can now develop superior microorganisms much more efficiently through the integration of itself with systems biology and synthetic biology.
Professor Lee will introduce general strategies for systems metabolic engineering which will be accompanied by many successful examples, including the production of chemicals, fuels and materials such as propanol, butanol, 1,4-diaminobutane, 1,5-diaminopentane, succinic acid, polyhydroxyalkanoates, and polylactic acid.
Professor Sang Yup Lee said: "Bio-based production of chemicals and materials will play an increasingly important role in establishing a sustainable world. To make the bioprocess efficient and economically competitive, it is essential to improve the performance of microorganisms through systems metabolic engineering. From industrial solvents to plastics, an increasing number of products of everyday use will be produced through bioprocesses."
Professor Lee will present the 5th Environmental Microbiology Lecture on 8 October 2012 at the Royal Society of Medicine, 1 Wimpole Street, London W1G 0AE. Registration begins at 17.30 and the lecture will start 18.30. There will be a drinks reception after the lecture at 19.30 - 20.30.
###
Notes to Editors:
Contact Details
Additional information is available from: Dr Lucy Harper, Communications Manager at the Society for Applied Microbiology [Office: +44(0)1234 326661; Mobile: 07920 264596; email: lucy@sfam.org.uk]
1. The Environmental Microbiology lecture co-sponsored by the Society for Applied Microbiology and Wiley-Blackwell will take place from 17.30 on 8 October 2012 at the Royal Society of Medicine, 1 Wimpole Street London W16 0AE. Professor Sang Yup Lee will be available for interviews from 17.00 before the event.
2. The lecture will be available online 24hrs after the event.
3. A photograph of a transmission electron micrograph of metabolically engineered Escherichia coli cells accumulating poly(lactate-co-3hydroxybutyrate) copolymers is available via this dropbox folder: https://www.dropbox.com/sh/k02x6hiulvpmvx5/TOo3E58jqh
4. Photographs will be taken during the event and will be available on request from Dr Lucy Harper: lucy@sfam.org.uk or Clare Doggett: clare@sfam.org.uk
5. About Wiley-Blackwell
Wiley-Blackwell is the international scientific, technical, medical and scholarly publishing business of John Wiley & Sons, with strengths in every major academic and professional field and partnerships with many of the world's leading societies. Wiley-Blackwell publishes over 1,400 peer-reviewed journals as well as 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols. For more information, please visit www.wileyonlinelibrary.com or www.wileyonlinelibrary.com.
6. About the Society for Applied Microbiology (SfAM)
SfAM is the voice of applied microbiology within the UK. It is the oldest UK microbiology society with members worldwide. In 2006 SfAM celebrated the 75th anniversary and a number of special events were held during the year. The final celebration was the President's Dinner which was held in the Palace of Westminster on 23rd November 2006. SfAM works in partnership with sister organisations and microbiological bodies to ensure that microbiology and microbiologists are able to exert influence on policy-makers within the UK, in Europe and world-wide.
7. About KAIST Korea Advanced Institute of Science and Technology
(KAIST) was established in 1971 as Korea's first research university specialized in science, engineering and technology. In 1986, the university began admitting undergraduate students (As of today, KAIST has 6,000 graduate and 4,000 undergraduate students). Mainly funded by the Korean government, KAIST has played an integral role in the nation's state-of-the-art research and technology development and nurtured highly trained scientists and engineers who became outstanding leaders in academia, industry and business throughout the world.
Ref:1. Yu Kyung Jung, Tae Yong Kim, Si Jae Park, Sang Yup Lee. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnology and Bioengineering Volume 105, Issue 1, pages 161-171, 1 January 2010 DOI:10.1002/bit.22548. http://onlinelibrary.wiley.com/doi/10.1002/bit.22548/abstract - full article behind paywall.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2012-10/tkai-set100512.php
49ers game ravens ray lewis steven tyler national anthem paterno newt gingrich joe pa
কোন মন্তব্য নেই:
একটি মন্তব্য পোস্ট করুন